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Abstract. We show that a task that typically involves rather deep semantic 
processing of text—being recognizing textual entailment our case study—can 
be successfully solved without any tools at all specific for the language of the 
texts on which the task is performed. Instead, we automatically translate the text 
into English using a standard machine translation system, and then perform all 
linguistic processing, including syntactic and semantic levels, using only Eng-
lish language linguistic tools. In this case study we use Italian annotated data. 
Textual entailment is a relation between two texts. To detect it, we use various 
measures, which allow us to make entailment decision in the two-way classifi-
cation task (YES / NO). We set up various heuristics and measures for evaluating 
the entailment between two texts based on lexical relations. To make entailment 
judgments, the system applies named entity recognition module, chunking, part-
of-speech tagging, n-grams, and text similarity modules to both texts, all those 
modules being for English and not for Italian. Rules have been developed to 
perform the two-way entailment classification. Our system makes entailment 
judgments basing on the entailment scores for the text pairs. The system was 
evaluated on Italian textual entailment data sets: we trained our system on Ital-
ian development datasets using the WEKA machine learning toolset and tested 
it on Italian test data sets. The accuracy of our system on the development cor-
pus is 0.525 and on the test corpus is 0.66, which is a good result given that no 
Italian-specific linguistic information was used.  

Keywords: Recognizing textual entailment, n-grams, text similarity, machine 
translation, cross-lingual textual entailment. 

1 Introduction 

Recognizing Textual Entailment (RTE) is one of recent challenges of Natural Lan-
guage Processing (NLP) [1]. Textual entailment is defined as a directional relation-
ship between pairs of text expressions, denoted by T—the entailing “Text”, and H—
the entailed “Hypothesis”. T entails H if the meaning of H can be inferred from the 
meaning of T, as would typically be interpreted by people. 



For example, the following text: T = John’s assassin is in jail entails the following 
hypothesis: H = John is dead. Indeed, if there exists one’s assassin, then this person is 
dead. On the other hand, the text T = Mary lives in Europe does not entail a hypothe-
sis H = Mary lives in London. 

RTE is useful for many NLP tasks. For example, in text summarization (sometimes 
denoted by SUM) a summary of a document should be entailed by its contents; para-
phrases can be seen as mutual entailment between the two expressions; in Information 
Extraction (IE), the extracted information should also be entailed by the documents; 
in Question Answering (QA), the answer obtained for a question must be entailed by 
the supporting snippets of text. 

There exist a number of Recognizing Textual Entailment evaluation initiatives. 
There have been held seven Recognizing Textual Entailment (RTE) competitions: 
RTE-1 in 2005 [2], RTE-2 [3] in 2006, RTE-3 [4] in 2007, RTE-4 [5] in 2008, RTE-5 
[6] in 2009, RTE-6 [7] in 2010, RTE-7 [8] in 2011. In 2010, Parser Training and 
Evaluation using Textual Entailment event [9] was organized in frame of SemEval-2.  

In 2011, Recognizing Inference in Text (RITE) was organized by NTCIR-9.1 In 
2012, Cross-lingual Textual Entailment for Content Synchronization (CLTE)2 track 
was organized in frame of SemEval-2012. Gradual advances and previous versions of 
the present work have been presented at RTE-5, RTE-6, RTE-7, SemEval-2 Parser 
Training and Evaluation using Textual Entailment Task, RITE, and SemEval-2012: 
Cross-lingual Textual Entailment for Content Synchronization. 

In this paper, we report the results obtained with an improved version of our sys-
tem. This system uses a chain of NLP modules in order to obtain a wide variety of 
features of both text T and hypothesis H, varying from n-gram based to syntactic and 
semantic levels. 

The contribution of this paper consists in suggesting that certain tasks—in this case 
the recognizing textual entailment task as a case study—that involve deep language 
processing can be accomplished without the use of any tools or techniques specific for 
the given language. 

Namely, we use a pivot language approach: our text processing modules work with 
English language data; the input texts in any language are translated into English us-
ing a standalone machine translation system. Thus, we show that machine translation 
can be used to successfully perform the RTE task in any language or even when T and 
H are in different languages. 

For evaluation, in this work we use the EVALITA Textual Entailment data sets. 
EVALITA 20093 was an evaluation campaign of both Natural Language Processing 
and speech technologies for Italian language. The EVALITA Textual Entailment task4 
consisted in detection of inferential relationships between pairs of short texts.  

The work is organized as follows. Our two-way textual entailment recognition sys-
tem architecture is presented in Section 2. Section 3 describes feature extraction, to be 
used with the WEKA toolset [10]. The experimental results on the development and 
test data sets are given in Section 4. Finally, conclusions are drawn in Section 5. 

                                                           
1 http://artigas.lti.cs.cmu.edu/rite/Main_Page 
2 http://www.cs.york.ac.uk/semeval-2012/task8/ 
3 http://www.evalita.it/2009 
4 http://www.evalita.it/2009/tasks/te 



2 System Architecture: A Machine Learning Approach 

The EVALITA datasets used to test our system are available in the Italian language. 
The task that has been proposed for EVALITA is basically a binary classification 
textual entailment problem: a system should predict whether the text T in the text pair 
entails or not the corresponding hypothesis H. 

We explore in this paper a machine learning based approach for this EVALITA 
task. Our system generates various lexical matching scores calculated over the devel-
opment dataset are used to train the model along with the target class. Specifically, 
the system includes such components as the preprocessing module, lexical similarity 
module, and text similarity module. The lexical similarity module is in turn divided 
into sub-modules such as POS matching, chunk matching, and named entity match-
ing. 

This trained model was then used to predict the classification of unseen text pairs 
in the test dataset. The WEKA machine learning toolset is used to classify and predict 
the classification of text pairs. As the pairs are available in Italian language, our sys-
tem uses pivot language approach: it applies the textual entailment module after 
automatically translating the text pair into English.  

Figure 1 shows our system architecture, where the text and hypothesis sentences 
are translated into English. 

2.1 Pre-processing 

The system extracts the T (text) and H (hypothesis) pair from the EVALITA task 
data. The text and hypothesis pair is available there in the Italian language. Microsoft 
Bing translator API5 for Bing translator (the file microsoft-translator-
java-api-0.4-jar-with-dependencies.jar) was used to translate the T 
and H text sentences into English. 

The translated Text and Hypothesis sentences were then passed through stop-word 
removal and co-reference resolution modules. 

Stop-word Removal This module removes stop-words listed in a pre-defined stop-
word list from the T and H sentences. 

Co-reference resolution Co–reference chains are evaluated in the datasets before 
passing the text to the RTE module. The objective is to increase the entailment score 
by substituting the anaphors with their antecedents. 

A word (often a pronoun) or phrase in the sentence can be used to refer to an entity 
introduced earlier or later in the discourse. The description that introduces the entity 
and all expressions that refer to it are said to have the same referent; this phenomenon 
is called co-reference. 

We distinguish between two types of co-reference. When the reader must look 
back to the previous context to find the referent, then the co-reference is called ana-

                                                           
5 http://code.google.com/p/microsoft-translator-java-api/ 



phoric reference. When the reader must look forward to find the referent, then it is 
called cataphoric reference. 

To address this problem we used a tool called JavaRAP6, which is a Java-based 
implementation of the Resolution of Anaphora Procedure (RAP), an algorithm devel-
oped by Lappin and Leass [11]. We observed, however, that co-referential expres-
sions are very rare in the sentence based paradigm.  

2.4 Lexical Based Textual Entailment (TE) Recognition Module 

Text–Hypothesis pairs are the inputs to the system. The overall TE module is a collec-
tion of several lexical-based sub-modules. Each sub-module produces a lexical match-
ing score that is used to develop a training model. 

                                                           
6 http://aye.comp.nus.edu.sg/~qiu/NLPTools/JavaRAP.html 

 

Fig. 1. Architecture of our system. 



N-gram Matching Module The n-gram matching basically measures the 
percentage of unigrams, bigrams, and trigrams of the Hypothesis that are also present 
in the corresponding Text. Note that both the Text and the Hypothesis have been 
previously pre-processed with stop-word removal, so that the n-grams do not contain 
any stop-words. 

The scores for different values of n are simply combined to get an overall n-gram 
matching score for a particular pair. 

Chunk Similarity module    This sub-module of our system evaluates the key NP 
chunks of both text and hypothesis, that are identified using the NP Chunker v1.17 
tool. Then, our system checks the presence of NP chunks of the hypothesis in the 
corresponding text. 

The system calculates the overall value for the chunk matching, i.e., the number of 
NP chunks of the text that match with NP chunks of the hypothesis. If the chunks are 
not similar in their surface form, then our system applies WordNet-based matching 
for the words: if they match in WordNet synsets information, then the chunks are 
considered similar. 

WordNet is one of most important resource for lexical analysis. The WordNet 2.0 
has been used for WordNet-based chunk matching. The API for WordNet Searching 
(JAWS),8 an API that provides Java applications with the ability to retrieve data from 
the WordNet database, was used. 

Text Distance Module    The system takes into consideration a wide variety of text 
similarity measures calculated over the each T–H pair. These text similarity measures 
are summed up together to produce the total final score for a particular text pair, 
which is used for the classification decision. 

Specifically, the following well-known text similarity measures are used in our 
system: 

− Cosine Similarity 
− Levenshtein Distance 
− Euclidean Distance 
− Monge–Elkan Distance 
− Needleman–Wunch Distance 
− Smith–Waterman Distance 
− Block Distance 
− Jaro Similarity 
− Matching Coefficient Similarity 
− Dice Similarity 
− Overlap Coefficient 
− Q-grams Distance 

                                                           
7 http://www.dcs.shef.ac.uk/~mark/phd/software/ 
8 http://lyle.smu.edu/~tspell/jaws/index.html 



Named Entity Matching    This process is based on the detection and matching of 
named entities (NEs) in the T–H pair. The Stanford Named Entity Recognizer (NER) 
was used to tag the named entities in both text and hypothesis. The system simply 
calculates the number of the Hypothesis’s NEs that are present in the Text. A score is 
associated with the matching as follows: 

Hypothesisin  NEs ofNumber 

Hypothesis andText in  NEscommon  ofNumber 
NE_Match = . 

Part-of-Speech Matching    This module basically deals with matching the common 
part of speech (POS) tags between the T and H. The Stanford POS tagger was used to 
tag words with the parts of speech in both the Text and the Hypothesis. The system 
calculates the number of the verb and noun POS words in the Hypothesis that match 
those in the Text. A score is associated with the number of patched POSs as follows: 

Hypothesisin  POSsnoun  and  verbofnumber  Total

Hypothesis andText in  POSsnoun  and  verbofNumber 
POS_Match = . 

3 Feature Extraction 

The system-generated matching scores were fed in the training module of the WEKA 
machine learning tool to develop a classification model. This model is used to predict 
the presence or absence of entailment in the untagged text pair in the test set of the 
EVALITA task. 

The main motivation to introduce a machine learning approach in this EVALITA 
task is that the Textual Entailment task can be considered as a classification problem. 
Different measures applied to the Text–Hypothesis pair can be used as a feature vec-
tor for the classifier. In this architecture we used lexical similarities as the feature 
vector. Naïve Bayes classifier was used to predict the outcome for unseen pairs. Fig-
ure 2 illustrates the concept of machine learning for the classification of textual en-
tailment problem. 

 

Fig. 2. Machine Learning Classification 

The Naïve Bayes algorithm is a classification algorithm based on the Bayes rule 
that assumes the attributes X1, …, Xn are all mutually independent, given a condition 



Y. The importance of this assumption lays in that it dramatically simplifies the repre-
sentation of the conditional probability P(X|Y), as well as the problem of estimating it 
from the training data. 

Consider, for example, the case of two variables, where the feature vector X = <X1, 
X2>. In this case we have: 

P (X | Y) = P(X1, X2 | Y) 
 = P (X1 | X2, Y) P(X2 | Y) 
 = P (X1 | Y) P(X2 | Y), 

where the second line follows from a general property of probabilities, and the third 
line follows from the definition of conditional independence. More generally, when 
the feature vector X contains n attributes that are mutually independent given Y, we 
have: 

 ∏
=

=
n

i

in

1

1 )Y|X(P)Y|X,...,X(P  (1) 

For the sake of completeness, let us now derive the Naive Bayes algorithm, assum-
ing in general that Y is any discrete-valued variable, and the attributes X1, …, Xn are 
any discrete or real valued attributes. Our goal is to train a classifier that will output 
the probability distribution over possible values of the target Y, for each new instance 
X that is the data point to be classified. 

The expression for the probability that Y will take on its k-th possible value, ac-
cording to the Bayes rule, is 
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where the sum is taken over all possible values yj of Y. Now, assuming that all Xi are 
conditionally independent given Y, we can rewrite the above equation as 
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This is the fundamental equation underlying the Naïve Bayes classifier (called na-
ïve because the independent assumption if often assumed without thorough justifica-
tion). 

The training file comprises different lexical similarity matching scores, separated 
by comma. It also includes the target class of each text pair from the gold standard 
values. An example of the training file in the WEKA format is shown in Figure 3 
(obviously, not all data rows are shown). 

This file is fed into the WEKA toolset, with the Naïve Bayes option for the classi-
fication algorithm to use. The toolset automatically evaluates the average accuracy of 
the classification achieved on these training data. 



4   Experimental Results 

The development and test datasets consist of 400 Text–Hypothesis pairs. The lexical 
features are calculated for both development and test datasets. Matching scores of the 
development dataset were used to train the model. The WEKA toolset was used to 
train the classification model and test the output for the unseen pairs thereafter. 

The experimental results obtained for both development and text data predicted by 
the WEKA toolset using the Naïve Bayes as the classification algorithm are as fol-
lows. 

The confusion matrix for the development data is shown in Table 1.  

Table 1.  Confusion matrix obtained on the training dataset. 

Correctly Classified Instances 210 52.5% 
Incorrectly Classified Instances 190 47.5% 
Total Number of Instances 400   

The precision, recall and the corresponding F-measure for the development dataset 
are shown in Table 2. 

Table 2.  Precision, recall, an F-measure obtained on the training dataset. 

Class Precision Recall F-measure  
YES 0.541 0.905 0.677 
NO 0.344 0.061 0.104 

Weighted Avg. 0.452 0.525 0.419 

The accuracy for the test dataset was 0.525. 
The confusion matrix for test data is shown in Table 3. 

@relation EVALITA 
@attribute N-Gram real 
@attribute Text-Similarity real 
@attribute Part-of-Speech real 
@attribute Named Entity real 
@attribute Chunk real 
@attribute class {YES,NO} 
@data 
24,16,10,2,15,YES 
39,12,23,0,17,YES 
41,15,17,1,11,YES 
61,13,28,3,21,YES 
78,16,34,0,9,NO 

Fig. 3. Example of the feature vector structure of the training data 



Table 3.  Confusion matrix obtained on the test dataset. 

Correctly Classified Instances 264 66.0 % 
Incorrectly Classified Instances 136 34.0% 

Total Number of Instances 400   

The precision, recall and the corresponding F-measure obtained on the test dataset 
are shown in Table 4. 

Table 4.  Precision, Recall, F-Measure on Test Data. 

Class Precision Recall F-Measure  
YES 0.602 0.945 0.735 
NO 0.872 0.375 0.524 

Weighted Avg. 0.737 0.660 0.630 

Finally, the accuracy obtained for test dataset was 0.660. This is a very good accu-
racy given that no language-specific (for the Italian language) tools were used for 
feature extraction. Instead, all linguistic processing was performed on the English text 
obtained via automatic translation. 

5 Conclusions and future work 

Results show that a lexical based approach appropriately tackles the textual entail-
ment problem. Experiments have been initiated for a semantic and syntactic based 
RTE task. 

The next step is to carry out detailed error analysis of the present system and iden-
tify ways to overcome the errors. In the present task, the final textual entailment sys-
tem has been optimized for the entailment YES/NO decision using the development 
set. 

Finally, our textual entailment system is to be applied in Japanese, French, Italian, 
Spanish, and German datasets also. With those experiments we expect to show that 
the idea of using only English-language linguistic information for deep processing of 
data in other languages can be applied to a wide variety of languages, most probably 
depending on the quality of the automatic translation system available for this. We 
also plan to investigate the applicability of this idea to the cross-lingual or multilin-
gual settings: when the hypothesis and the text are in different languages, and the 
training and test datasets contain pairs in different combinations of languages. 
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