
Recognizing Textual Entailment in Non-English Text
via Automatic Translation into English

Partha Pakray,1 Snehasis Neogi,1 Sivaji Bandyopadhyay,1 Alexander Gelbukh 2

1 Computer Science and Engineering Department,
Jadavpur University, Kolkata, India

 2 Center for Computing Research, National Polytechnic Institute,
 Mexico City, Mexico

parthapakray@gmail.com, snehasis1981@gmail.com,
sbandyopadhyay@cse.jdvu.ac.in, www.gelbukh.com

Abstract. We show that a task that typically involves rather deep semantic
processing of text—being recognizing textual entailment our case study—can
be successfully solved without any tools at all specific for the language of the
texts on which the task is performed. Instead, we automatically translate the text
into English using a standard machine translation system, and then perform all
linguistic processing, including syntactic and semantic levels, using only Eng-
lish language linguistic tools. In this case study we use Italian annotated data.
Textual entailment is a relation between two texts. To detect it, we use various
measures, which allow us to make entailment decision in the two-way classifi-
cation task (YES / NO). We set up various heuristics and measures for evaluating
the entailment between two texts based on lexical relations. To make entailment
judgments, the system applies named entity recognition module, chunking, part-
of-speech tagging, n-grams, and text similarity modules to both texts, all those
modules being for English and not for Italian. Rules have been developed to
perform the two-way entailment classification. Our system makes entailment
judgments basing on the entailment scores for the text pairs. The system was
evaluated on Italian textual entailment data sets: we trained our system on Ital-
ian development datasets using the WEKA machine learning toolset and tested
it on Italian test data sets. The accuracy of our system on the development cor-
pus is 0.525 and on the test corpus is 0.66, which is a good result given that no
Italian-specific linguistic information was used.

Keywords: Recognizing textual entailment, n-grams, text similarity, machine
translation, cross-lingual textual entailment.

1 Introduction

Recognizing Textual Entailment (RTE) is one of recent challenges of Natural Lan-
guage Processing (NLP) [1]. Textual entailment is defined as a directional relation-
ship between pairs of text expressions, denoted by T—the entailing “Text”, and H—
the entailed “Hypothesis”. T entails H if the meaning of H can be inferred from the
meaning of T, as would typically be interpreted by people.

For example, the following text: T = John’s assassin is in jail entails the following
hypothesis: H = John is dead. Indeed, if there exists one’s assassin, then this person is
dead. On the other hand, the text T = Mary lives in Europe does not entail a hypothe-
sis H = Mary lives in London.

RTE is useful for many NLP tasks. For example, in text summarization (sometimes
denoted by SUM) a summary of a document should be entailed by its contents; para-
phrases can be seen as mutual entailment between the two expressions; in Information
Extraction (IE), the extracted information should also be entailed by the documents;
in Question Answering (QA), the answer obtained for a question must be entailed by
the supporting snippets of text.

There exist a number of Recognizing Textual Entailment evaluation initiatives.
There have been held seven Recognizing Textual Entailment (RTE) competitions:
RTE-1 in 2005 [2], RTE-2 [3] in 2006, RTE-3 [4] in 2007, RTE-4 [5] in 2008, RTE-5
[6] in 2009, RTE-6 [7] in 2010, RTE-7 [8] in 2011. In 2010, Parser Training and
Evaluation using Textual Entailment event [9] was organized in frame of SemEval-2.

In 2011, Recognizing Inference in Text (RITE) was organized by NTCIR-9.1 In
2012, Cross-lingual Textual Entailment for Content Synchronization (CLTE)2 track
was organized in frame of SemEval-2012. Gradual advances and previous versions of
the present work have been presented at RTE-5, RTE-6, RTE-7, SemEval-2 Parser
Training and Evaluation using Textual Entailment Task, RITE, and SemEval-2012:
Cross-lingual Textual Entailment for Content Synchronization.

In this paper, we report the results obtained with an improved version of our sys-
tem. This system uses a chain of NLP modules in order to obtain a wide variety of
features of both text T and hypothesis H, varying from n-gram based to syntactic and
semantic levels.

The contribution of this paper consists in suggesting that certain tasks—in this case
the recognizing textual entailment task as a case study—that involve deep language
processing can be accomplished without the use of any tools or techniques specific for
the given language.

Namely, we use a pivot language approach: our text processing modules work with
English language data; the input texts in any language are translated into English us-
ing a standalone machine translation system. Thus, we show that machine translation
can be used to successfully perform the RTE task in any language or even when T and
H are in different languages.

For evaluation, in this work we use the EVALITA Textual Entailment data sets.
EVALITA 20093 was an evaluation campaign of both Natural Language Processing
and speech technologies for Italian language. The EVALITA Textual Entailment task4
consisted in detection of inferential relationships between pairs of short texts.

The work is organized as follows. Our two-way textual entailment recognition sys-
tem architecture is presented in Section 2. Section 3 describes feature extraction, to be
used with the WEKA toolset [10]. The experimental results on the development and
test data sets are given in Section 4. Finally, conclusions are drawn in Section 5.

1 http://artigas.lti.cs.cmu.edu/rite/Main_Page
2 http://www.cs.york.ac.uk/semeval-2012/task8/
3 http://www.evalita.it/2009
4 http://www.evalita.it/2009/tasks/te

2 System Architecture: A Machine Learning Approach

The EVALITA datasets used to test our system are available in the Italian language.
The task that has been proposed for EVALITA is basically a binary classification
textual entailment problem: a system should predict whether the text T in the text pair
entails or not the corresponding hypothesis H.

We explore in this paper a machine learning based approach for this EVALITA
task. Our system generates various lexical matching scores calculated over the devel-
opment dataset are used to train the model along with the target class. Specifically,
the system includes such components as the preprocessing module, lexical similarity
module, and text similarity module. The lexical similarity module is in turn divided
into sub-modules such as POS matching, chunk matching, and named entity match-
ing.

This trained model was then used to predict the classification of unseen text pairs
in the test dataset. The WEKA machine learning toolset is used to classify and predict
the classification of text pairs. As the pairs are available in Italian language, our sys-
tem uses pivot language approach: it applies the textual entailment module after
automatically translating the text pair into English.

Figure 1 shows our system architecture, where the text and hypothesis sentences
are translated into English.

2.1 Pre-processing

The system extracts the T (text) and H (hypothesis) pair from the EVALITA task
data. The text and hypothesis pair is available there in the Italian language. Microsoft
Bing translator API5 for Bing translator (the file microsoft-translator-
java-api-0.4-jar-with-dependencies.jar) was used to translate the T
and H text sentences into English.

The translated Text and Hypothesis sentences were then passed through stop-word
removal and co-reference resolution modules.

Stop-word Removal This module removes stop-words listed in a pre-defined stop-
word list from the T and H sentences.

Co-reference resolution Co–reference chains are evaluated in the datasets before
passing the text to the RTE module. The objective is to increase the entailment score
by substituting the anaphors with their antecedents.

A word (often a pronoun) or phrase in the sentence can be used to refer to an entity
introduced earlier or later in the discourse. The description that introduces the entity
and all expressions that refer to it are said to have the same referent; this phenomenon
is called co-reference.

We distinguish between two types of co-reference. When the reader must look
back to the previous context to find the referent, then the co-reference is called ana-

5 http://code.google.com/p/microsoft-translator-java-api/

phoric reference. When the reader must look forward to find the referent, then it is
called cataphoric reference.

To address this problem we used a tool called JavaRAP6, which is a Java-based
implementation of the Resolution of Anaphora Procedure (RAP), an algorithm devel-
oped by Lappin and Leass [11]. We observed, however, that co-referential expres-
sions are very rare in the sentence based paradigm.

2.4 Lexical Based Textual Entailment (TE) Recognition Module

Text–Hypothesis pairs are the inputs to the system. The overall TE module is a collec-
tion of several lexical-based sub-modules. Each sub-module produces a lexical match-
ing score that is used to develop a training model.

6 http://aye.comp.nus.edu.sg/~qiu/NLPTools/JavaRAP.html

Fig. 1. Architecture of our system.

N-gram Matching Module The n-gram matching basically measures the
percentage of unigrams, bigrams, and trigrams of the Hypothesis that are also present
in the corresponding Text. Note that both the Text and the Hypothesis have been
previously pre-processed with stop-word removal, so that the n-grams do not contain
any stop-words.

The scores for different values of n are simply combined to get an overall n-gram
matching score for a particular pair.

Chunk Similarity module This sub-module of our system evaluates the key NP
chunks of both text and hypothesis, that are identified using the NP Chunker v1.17
tool. Then, our system checks the presence of NP chunks of the hypothesis in the
corresponding text.

The system calculates the overall value for the chunk matching, i.e., the number of
NP chunks of the text that match with NP chunks of the hypothesis. If the chunks are
not similar in their surface form, then our system applies WordNet-based matching
for the words: if they match in WordNet synsets information, then the chunks are
considered similar.

WordNet is one of most important resource for lexical analysis. The WordNet 2.0
has been used for WordNet-based chunk matching. The API for WordNet Searching
(JAWS),8 an API that provides Java applications with the ability to retrieve data from
the WordNet database, was used.

Text Distance Module The system takes into consideration a wide variety of text
similarity measures calculated over the each T–H pair. These text similarity measures
are summed up together to produce the total final score for a particular text pair,
which is used for the classification decision.

Specifically, the following well-known text similarity measures are used in our
system:

− Cosine Similarity
− Levenshtein Distance
− Euclidean Distance
− Monge–Elkan Distance
− Needleman–Wunch Distance
− Smith–Waterman Distance
− Block Distance
− Jaro Similarity
− Matching Coefficient Similarity
− Dice Similarity
− Overlap Coefficient
− Q-grams Distance

7 http://www.dcs.shef.ac.uk/~mark/phd/software/
8 http://lyle.smu.edu/~tspell/jaws/index.html

Named Entity Matching This process is based on the detection and matching of
named entities (NEs) in the T–H pair. The Stanford Named Entity Recognizer (NER)
was used to tag the named entities in both text and hypothesis. The system simply
calculates the number of the Hypothesis’s NEs that are present in the Text. A score is
associated with the matching as follows:

Hypothesisin NEs ofNumber

Hypothesis andText in NEscommon ofNumber
NE_Match = .

Part-of-Speech Matching This module basically deals with matching the common
part of speech (POS) tags between the T and H. The Stanford POS tagger was used to
tag words with the parts of speech in both the Text and the Hypothesis. The system
calculates the number of the verb and noun POS words in the Hypothesis that match
those in the Text. A score is associated with the number of patched POSs as follows:

Hypothesisin POSsnoun and verbofnumber Total

Hypothesis andText in POSsnoun and verbofNumber
POS_Match = .

3 Feature Extraction

The system-generated matching scores were fed in the training module of the WEKA
machine learning tool to develop a classification model. This model is used to predict
the presence or absence of entailment in the untagged text pair in the test set of the
EVALITA task.

The main motivation to introduce a machine learning approach in this EVALITA
task is that the Textual Entailment task can be considered as a classification problem.
Different measures applied to the Text–Hypothesis pair can be used as a feature vec-
tor for the classifier. In this architecture we used lexical similarities as the feature
vector. Naïve Bayes classifier was used to predict the outcome for unseen pairs. Fig-
ure 2 illustrates the concept of machine learning for the classification of textual en-
tailment problem.

Fig. 2. Machine Learning Classification

The Naïve Bayes algorithm is a classification algorithm based on the Bayes rule
that assumes the attributes X1, …, Xn are all mutually independent, given a condition

Y. The importance of this assumption lays in that it dramatically simplifies the repre-
sentation of the conditional probability P(X|Y), as well as the problem of estimating it
from the training data.

Consider, for example, the case of two variables, where the feature vector X = <X1,
X2>. In this case we have:

P (X | Y) = P(X1, X2 | Y)
 = P (X1 | X2, Y) P(X2 | Y)
 = P (X1 | Y) P(X2 | Y),

where the second line follows from a general property of probabilities, and the third
line follows from the definition of conditional independence. More generally, when
the feature vector X contains n attributes that are mutually independent given Y, we
have:

 ∏
=

=
n

i

in

1

1)Y|X(P)Y|X,...,X(P (1)

For the sake of completeness, let us now derive the Naive Bayes algorithm, assum-
ing in general that Y is any discrete-valued variable, and the attributes X1, …, Xn are
any discrete or real valued attributes. Our goal is to train a classifier that will output
the probability distribution over possible values of the target Y, for each new instance
X that is the data point to be classified.

The expression for the probability that Y will take on its k-th possible value, ac-
cording to the Bayes rule, is

∑ ==
====

j

jnj

knk
nk

yy

yy
y

)Y|X,...,X(P)Y(P

)Y|X,...,X(P)Y(P
)X,...,X|Y(P

1

1
1

, (2)

where the sum is taken over all possible values yj of Y. Now, assuming that all Xi are
conditionally independent given Y, we can rewrite the above equation as

∑ ∏
∏

==

==
==

j i

jij

i

kik

nk
yy

yy

y
)Y|X(P)Y(P

)Y|X(P)Y(P

)X,...,X|Y(P 1
. (3)

This is the fundamental equation underlying the Naïve Bayes classifier (called na-
ïve because the independent assumption if often assumed without thorough justifica-
tion).

The training file comprises different lexical similarity matching scores, separated
by comma. It also includes the target class of each text pair from the gold standard
values. An example of the training file in the WEKA format is shown in Figure 3
(obviously, not all data rows are shown).

This file is fed into the WEKA toolset, with the Naïve Bayes option for the classi-
fication algorithm to use. The toolset automatically evaluates the average accuracy of
the classification achieved on these training data.

4 Experimental Results

The development and test datasets consist of 400 Text–Hypothesis pairs. The lexical
features are calculated for both development and test datasets. Matching scores of the
development dataset were used to train the model. The WEKA toolset was used to
train the classification model and test the output for the unseen pairs thereafter.

The experimental results obtained for both development and text data predicted by
the WEKA toolset using the Naïve Bayes as the classification algorithm are as fol-
lows.

The confusion matrix for the development data is shown in Table 1.

Table 1. Confusion matrix obtained on the training dataset.

Correctly Classified Instances 210 52.5%
Incorrectly Classified Instances 190 47.5%
Total Number of Instances 400

The precision, recall and the corresponding F-measure for the development dataset
are shown in Table 2.

Table 2. Precision, recall, an F-measure obtained on the training dataset.

Class Precision Recall F-measure
YES 0.541 0.905 0.677
NO 0.344 0.061 0.104

Weighted Avg. 0.452 0.525 0.419

The accuracy for the test dataset was 0.525.
The confusion matrix for test data is shown in Table 3.

@relation EVALITA
@attribute N-Gram real
@attribute Text-Similarity real
@attribute Part-of-Speech real
@attribute Named Entity real
@attribute Chunk real
@attribute class {YES,NO}
@data
24,16,10,2,15,YES
39,12,23,0,17,YES
41,15,17,1,11,YES
61,13,28,3,21,YES
78,16,34,0,9,NO

Fig. 3. Example of the feature vector structure of the training data

Table 3. Confusion matrix obtained on the test dataset.

Correctly Classified Instances 264 66.0 %
Incorrectly Classified Instances 136 34.0%

Total Number of Instances 400

The precision, recall and the corresponding F-measure obtained on the test dataset
are shown in Table 4.

Table 4. Precision, Recall, F-Measure on Test Data.

Class Precision Recall F-Measure
YES 0.602 0.945 0.735
NO 0.872 0.375 0.524

Weighted Avg. 0.737 0.660 0.630

Finally, the accuracy obtained for test dataset was 0.660. This is a very good accu-
racy given that no language-specific (for the Italian language) tools were used for
feature extraction. Instead, all linguistic processing was performed on the English text
obtained via automatic translation.

5 Conclusions and future work

Results show that a lexical based approach appropriately tackles the textual entail-
ment problem. Experiments have been initiated for a semantic and syntactic based
RTE task.

The next step is to carry out detailed error analysis of the present system and iden-
tify ways to overcome the errors. In the present task, the final textual entailment sys-
tem has been optimized for the entailment YES/NO decision using the development
set.

Finally, our textual entailment system is to be applied in Japanese, French, Italian,
Spanish, and German datasets also. With those experiments we expect to show that
the idea of using only English-language linguistic information for deep processing of
data in other languages can be applied to a wide variety of languages, most probably
depending on the quality of the automatic translation system available for this. We
also plan to investigate the applicability of this idea to the cross-lingual or multilin-
gual settings: when the hypothesis and the text are in different languages, and the
training and test datasets contain pairs in different combinations of languages.

Acknowledgements. The work was partially supported by the Governments of India
and Mexico under the CONACYT-DST India (CONACYT 122030) project “Answer
Validation through Textual Entailment”, the Government of Mexico under the
CONACYT 50206-H project and SIP-IPN 20121823 project through Instituto
Politécnico Nacional, and the Seventh Framework Programme of European Union,
project 269180 “Web Information Quality Evaluation Initiative (WIQ-EI)”.

References

1. Ledeneva, Y., Sidorov G.: Recent Advances in Computational Linguistics. Informatica.

International Journal of Computing and Informatics, 34:3–18 (2010).

2. Dagan, I., Glickman, O., Magnini, B.: The PASCAL Recognising Textual Entailment Chal-

lenge. In: Proceedings of the First PASCAL Recognizing Textual Entailment Workshop.

(2005).

3. Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B., Szpektor, I.:

The Second PASCAL Recognising Textual Entailment Challenge. In: Proceedings of the

Second PASCAL Challenges Workshop on Recognising Textual Entailment, Venice, Italy

(2006).

4. Giampiccolo, D., Magnini, B., Dagan, I., Dolan, B.: The Third PASCAL Recognizing

Textual Entailment Challenge. In: Proceedings of the ACL-PASCAL Workshop on Textual

Entailment and Paraphrasing, Prague, Czech Republic (2007).

5. Giampiccolo, D., Dang, H. T., Magnini, B., Dagan, I., Cabrio, E.: The Fourth PASCAL

Recognizing Textual Entailment Challenge. In: Text Analysis Conference (TAC) 2008

Notebook Proceedings (2008).

6. Bentivogli, L., Dagan, I., Dang. H.T., Giampiccolo, D., Magnini, B.: The Fifth PASCAL

Recognizing Textual Entailment Challenge. In: Proceedings of the Text Analysis Confer-

ence (TAC) 2009 Workshop, National Institute of Standards and Technology, Gaithersburg,

Maryland USA (2009).

7. Bentivogli, L., Clark, P., Dagan, I., Dang, H.T., Giampiccolo, D.: The Sixth PASCAL

Recognizing Textual Entailment Challenge. In: Text Analysis Conference (TAC) 2010

Notebook Proceedings (2010).

8. Bentivogli, L., Clark P., Dagan I., Dang, H., Giampiccolo, D.: The Seventh PASCAL Rec-

ognizing Textual Entailment Challenge. In: Text Analysis Conference (TAC) 2011 Note-

book Proceedings (2011).

9. Yuret, D., Han, A., Turgut, Z.,: SemEval-2010 Task 12: Parser Evaluation using Textual

Entailments. In: Proceedings of the SemEval-2010 Evaluation Exercises on Semantic

Evaluation (2010).

10. Hall M., Frank, E., Holmes, G., Pfahringer B., Reutemann, P., Witten I. H.: The WEKA

Data Mining Software: An Update; SIGKDD Explorations, Volume 11, Issue 1 (2009).

11. Lappin, S., Leass, H.: An Algorithm for Pronominal Anaphora Resolution. Computational

Linguistics. 20(4) (1994) 535-561.

